Reblog: The Mind-Expanding Ideas of Andy Clark

The idea of the extended mind or extended cognition is not part of common parlance; however, many of us have espoused this idea naturally since our youth. It’s the concept that we use external, physical or digital, information to extend our knowledge and thinking processes.

Today’s “born-digital” kids––the first generation to grow up with the Internet, born 1990 and later––store their thoughts, education, and self-dialogue in external notes saved to the cloud. [1]

“… [Andy Clark describes us as] cyborgs, in the most natural way. Without the stimulus of the world, an infant could not learn to hear or see, and a brain develops and rewires itself in response to its environment throughout its life.”

via Read the full version from the author’s website.

[1] McGonigal; “Reality is Broken” pg. 127

Games as Medicine | FDA Clearance Methods

 

Games as Medicine | FDA Clearance Methods

Noah Falstein, @nfalstein
President, The Inspiracy
Neurogaming Consultant

Technically software and games are cleared and not approved by the FDA.

By background, Noah:

  • Has attended 31 GDCs
  • Been working in games since 1980 (started in entertainment and arcade games with Lucas Entertainment)
  • Gradually shifted over and consulted for 17 years on a wide variety of games
  • Started getting interested in medical games in 1991 (i.e. East3)
  • Went to Google and left due to platform perspective one had to have at Google
  • Game designer not a doctor, but voraciously learns about science and medical topics

Table of Content:

  • Context of games for health
  • New factor of FDA clearance
  • Deeper dive
  • Adv. and Disadvan. to clearance

Why are games and health an interesting thing?

Three reasons why games for health are growing quickly and are poised to be a very important thing

  • It’s about helping people (i.e. Dr. Sam Rodriguez’s work Google “Rodriguez pain VR”)
  • It’s challenging, exciting, and more diverse than standard games (i.e. games need to be fun, but if they’re not having the desired effect, for example restoring motion after a stroke, then you encounter an interesting challenge). The people in the medical field tend to be more diverse than those in the gaming space.
  • It’s a huge market* FDA clearance = big market
    IMG_2271

So what’s the catch?

Mis-steps along the way

  • Brain Training (i.e. Nintendo Gameboy had popular Japanese games claiming brain training)
  • Wii Fit (+U) (i.e. the balance board)
  • Lumosity fine (i.e. claims made that were unsubstantiated by research)

upshot: lack of research and good studies underpinning claims

Some bright spots

  • Remission from Hopelab (i.e. they targeted adherence: using the consequences of not having enough chemotherapy in their body)

FDA clearance is a gold standard

  • Because it provides a stamp of good, trustable, etc.
  • The burden is on the people who make products to go through a regimen of tests that are science-driven
  • Noah strongly recommends Game Devs to link up with a university
  • Working on SaMD – Software as a Med Device
  • Biggest single world market drives others
  • Necessary for a prescription and helps with insurance reimbursement
  • but it’s very expensive and time-consuming

IMG_2272

FDA definition of a serious disease
[missing]

MindMaze Pro

  • FDA clearance May 2017
  • Stroke Rehabilitation
  • Early in-hospital acute care while plasticity high

Pear Therapeutic

  • Positions its product as a “prescription digital therapeutic”

IMG_2273

Akili Interactive Labs

  • Treats pediatric ADHD
  • Late-stage trial results (Dec. 2017) were very positive with side effects of a headache and frustration, which is much better than alternatives like Ritalin
  • Seeking De Novo clearance
  • Adam Gazzaley – began as aging adult research with Neuroracer, a multi-year study published in Nature

The Future – Good, Bad, Ugly, Sublime

  • Each successful FDA clearance helps
  • But they still will require big $, years to dev
  • you have to create a company, rigorously study it, stall production because changing your game
    would make results invalid from studies, then you need to release it
  • Pharma is a powerful but daunting partner

Questions

  • Can FDA certification for games then reveal that some games are essentially street drugs?

 

Reblog: Player – Game – Designer

The above work comes from Thomas Bedenk, who I met at VRX London in 2016. See end his page for sources (link found at bottom).

This model provides a substrate, an interactive application namely a game and its production and consumption, and highlights the aspects regarding components Player, Game, and Designer into the full picture.

Read the full version from the author’s website.

Reblog: Google creates coffee making sim to test VR learning

Most VR experiences so far have been games and 360-degree videos, but Google is exploring the idea that VR can be a way to learn real life skills. The skill it chose to use as a test of this hypothesis is making coffee. So of course, it created a coffee making simulator in VR.

As explained by author, Ryan Whitwam, this simulation proved more effective over the other group in the study that had just a video primer on the coffee-making technique herein.

Participants were allowed to watch the video or do the VR simulation as many times as they wanted, and then the test—they had to make real espresso. According to Google, the people who used the VR simulator learned faster and better, needing less time to get confident enough to do the real thing and making fewer mistakes when they did.

As you all know, I have the Future of Farming project going right now with Oculus Launch Pad. It is my ambition to impart some knowledge about farming/gardening to users of that experience. Therefore I found this article to be quite intriguing. How fast can we all learn to crop tend using novel equipment should we be primed first by an interactive experience/tutorial. This is what I’d name ‘environment transferable learning’ or ETL. The idea that in one environment you can learn core concepts or skills that transcend the tactical elements of the environment. For example, a skill learned in VR that translates into a real world environment, maybe “Environment Transferable Skills” or ETS.

A fantastic alternate example, also comes from Google, with Google Blocks. This application allows Oculus Rift or HTC Vive users to craft 3D models with controllers, and the tutorial walks users through how to use their virtual apparatuses. This example doesn’t use ETL, but we can learn from the design of the tutorial nonetheless for ETL applications. For instance, when Blocks teaches how to use the 3D shape tool it focuses on teaching the user by showing outlines of 3D models that it wants the user to place. The correct button is colored differently relative to other touch controller buttons. This signals a constraint to the user that this is the button to use. With sensors found in the Oculus Touch controllers, one could force the constraint of pointing with the index finger or grasping. In the example of farming, if there is a button interface in both the real and virtual world (the latter modeled closely to mimic the real world) I can then show a user how to push the correct buttons on the equipment to get started.

What I want to highlight is that it’s kind of a re-engineering of having someone walk you through your first time exercising a skill (i.e. espresso-making). It’s cool that the tutorial can animate a sign pointing your hands to the correct locations etc. Maybe not super useful for complicated tasks but to kind of instruct anything that requires basic motor skills VR ETL can be very interesting.

via Did you enjoy this article? Then read the full version from the author’s website.